Smart Grid AI-Powered Simulator - Technical Specification
Table of Contents
- Core Objective
- System Architecture
- Core Subsystems
- Generation Model
- Load Model
- Network & Zone Model
- Frequency Model
- Operating Limits
- Load Shedding System
- Dispatch & Control Logic
- AI Integration
- Early Warning System
- Data Logging & Metrics
- Simulation Engine
- Implementation Phases
Core Objective
The simulator must maintain grid stability by ensuring:
Σ Generation(t) − Σ Load(t) − Losses(t) ≈ 0
If this fails → frequency deviates → grid collapses.
The system must: - Predict load imbalances before they occur - Estimate time-to-load-shedding accurately - Minimize total load shed while maintaining stability - Prevent cascading blackouts - Optimize generation dispatch economically
System Architecture
High-Level Architecture
flowchart TB
subgraph Simulator["Smart Grid Simulator"]
Historical["Historical Load Data"]
Realtime["Real-time Load Data"]
Forecast["Forecast Engine"]
GenModel["Generator Models"]
FreqModel["Frequency Model"]
LoadForecast["Load Forecast (AI)"]
Network["Network Zones"]
RiskEst["Deficit & Risk Est."]
RiskPred["Shedding Risk Predictor"]
TimeEst["Time-to-Shedding Est."]
OptimalShed["Optimal Shedding"]
SheddingAI["Load Shedding AI (RL)"]
Control["Control Logic"]
Dispatch["Dispatch Engine"]
end
Historical --> Realtime
Realtime --> Forecast
Forecast --> LoadForecast
GenModel --> FreqModel
LoadForecast --> FreqModel
LoadForecast --> RiskEst
Network --> RiskEst
RiskPred --> RiskEst
RiskEst --> OptimalShed
TimeEst --> OptimalShed
SheddingAI --> OptimalShed
OptimalShed --> Dispatch
Dispatch --> Control
Control --> GenModel
Control --> Network
Design Principles
- AI Suggests, Physics Enforces, Protection Acts Last
- AI optimizes decisions but does not replace physics
- All safety thresholds remain rule-based
-
Protection systems have final authority
-
Modular & Scalable
- Start with single power station, single load bus
- Scale to multi-zone, multi-generator systems
-
Support incremental complexity
-
Realistic Constraints
- Generator ramp limits
- Startup delays
- Network transfer capacity
- Frequency dynamics
Core Subsystems
The system requires 6 core subsystems:
- Generation Model - Models power plants with realistic constraints
- Load Model - Bottom-up load aggregation with time-dependent profiles
- Network/Zones - Geographic and electrical zones with transfer limits
- Frequency Model - Swing equation-based frequency dynamics
- Load Shedding Logic - Priority-based, selective load disconnection
- Control & Dispatch Logic - Real-time decision engine
Generation Model
Generator Parameters
Each generator must have the following parameters:
| Parameter | Type | Description | Example Values |
|---|---|---|---|
id |
string | Unique identifier | "GEN_001" |
type |
enum | Generator type | steam, gas, diesel, hydro, renewable |
P_max |
float (MW) | Maximum output capacity | 1400 MW |
P_min |
float (MW) | Minimum stable output | 300 MW |
ramp_rate |
float (MW/sec) | Maximum ramp rate | 10 MW/min |
inertia_constant |
float (sec) | Inertia constant H | 5-10 seconds |
fuel_cost |
float ($/MWh) | Operating cost | 50-100 $/MWh |
startup_time |
float (sec) | Time to start from cold | 30 min |
status |
enum | Current status | ON, OFF, STARTING, TRIPPED |
efficiency |
float (0-1) | Conversion efficiency | 0.35-0.55 |
Generator State
| State Variable | Type | Description |
|---|---|---|
current_output |
float (MW) | Current power output |
available_reserve |
float (MW) | P_max - current_output |
ramp_direction |
enum | UP, DOWN, HOLD |
time_since_start |
float (sec) | For startup tracking |
Generator Constraints
Power Limits:
P_min ≤ P(t) ≤ P_max
Ramp Rate Limits:
|dP/dt| ≤ ramp_rate
Update Rule:
P(t+Δt) = clamp(
P(t) ± ramp_rate * Δt,
P_min,
P_max
)
Generator Types & Characteristics
| Type | Ramp Rate | Startup Time | Inertia | Typical Use |
|---|---|---|---|---|
| Steam | 5-10 MW/min | 30-60 min | High (8-10s) | Base load |
| Gas | 20-50 MW/min | 5-15 min | Medium (4-6s) | Peak load |
| Diesel | 30-60 MW/min | 2-5 min | Low (2-4s) | Emergency |
| Hydro | 50-100 MW/min | 1-3 min | Medium (4-6s) | Flexible |
| Renewable | Variable | N/A | Low (1-2s) | Intermittent |
Load Model
Load Aggregation Hierarchy
flowchart LR
Room["Room"] --> Building["Building"]
Building --> Feeder["Feeder"]
Feeder --> Sector["Sector"]
Sector --> Town["Town"]
Town --> Grid["Grid"]
style Room fill:#e1f5ff
style Building fill:#b3e5fc
style Feeder fill:#81d4fa
style Sector fill:#4fc3f7
style Town fill:#29b6f6
style Grid fill:#03a9f4
Load Parameters
| Parameter | Type | Description | Example |
|---|---|---|---|
id |
string | Unique identifier | "LOAD_RES_001" |
type |
enum | Load category | residential, commercial, industrial |
priority |
int | Shedding priority (1=highest) | 1-5 |
P_nominal |
float (MW) | Nominal power demand | 50 MW |
load_profile(t) |
function | Time-dependent factor | 0.5-1.5 |
sheddable |
bool | Can be disconnected | true/false |
zone_id |
string | Geographic zone | "ZONE_A" |
Load Profile (Time Dependent)
P_load(t) = P_nominal × usage_factor(t)
Typical Usage Patterns
Residential:
- Peak: 18:00-22:00 (evening)
- Low: 02:00-06:00 (night)
- Daily cycle: 200 * sin(2π * hour / 24)
Commercial: - Peak: 09:00-17:00 (business hours) - Low: 20:00-08:00 (off-hours)
Industrial: - Constant base load with shift changes - Event spikes during startup (300 MW spike)
Load Components
Load(t) = BaseLoad
+ DailyCycle
+ RandomNoise
+ EventSpikes
Example:
daily = 200 * sin(2π * hour / 24)
noise = random.normal(0, 20)
event = 300 if industrial_start else 0
load = 800 + daily + noise + event
Network & Zone Model
Zone Parameters
| Parameter | Type | Description |
|---|---|---|
zone_id |
string | Unique zone identifier |
max_transfer_capacity |
float (MW) | Maximum power transfer |
connected_zones |
list | Adjacent zones |
critical_loads |
list | Non-sheddable loads |
total_load |
float (MW) | Current zone load |
Zone Constraints
- Each zone has maximum transfer capacity to adjacent zones
- Load shedding must respect zonal boundaries
- Prevents unrealistic global shedding
- Enables realistic network congestion modeling
Example Zone Structure
graph TB
subgraph ZoneA["Zone A (Residential)"]
A_Transfer["Max Transfer: 500 MW"]
A_Critical["Critical Loads:<br/>Hospital (20 MW)"]
end
subgraph ZoneB["Zone B (Commercial)"]
B_Transfer["Max Transfer: 800 MW"]
B_Critical["Critical Loads:<br/>Data Center (50 MW)"]
end
subgraph ZoneC["Zone C (Industrial)"]
C_Transfer["Max Transfer: 1200 MW"]
C_Critical["Critical Loads:<br/>Water Treatment (30 MW)"]
end
subgraph ZoneD["Zone D"]
D_Transfer["Max Transfer: 1000 MW"]
end
ZoneA <--> ZoneB
ZoneA <--> ZoneC
ZoneB <--> ZoneD
ZoneC <--> ZoneD
style ZoneA fill:#ffebee
style ZoneB fill:#e8f5e9
style ZoneC fill:#fff3e0
style ZoneD fill:#f3e5f5
Frequency Model
Swing Equation (Simplified)
The frequency dynamics follow the swing equation:
df/dt = (P_gen - P_load - D·(f - f_nominal)) / (2H)
Where:
- H = system inertia constant (seconds)
- D = damping coefficient
- f_nominal = nominal frequency (50.0 Hz)
Practical Simplified Model
For simulation purposes:
Δf = K × (P_gen - P_load)
f = f_nominal + Δf
Where:
- K ≈ -0.005 Hz per MW imbalance (scaled to system size)
Frequency Calculation
def calculate_frequency(total_generation, total_load, f_nominal=50.0):
"""
Calculate system frequency based on power imbalance.
Args:
total_generation: Total generation (MW)
total_load: Total load (MW)
f_nominal: Nominal frequency (Hz)
Returns:
Current frequency (Hz)
"""
imbalance = total_generation - total_load
K = -0.005 # Hz per MW (scaled)
delta_f = K * imbalance
return f_nominal + delta_f
Rate of Change of Frequency (RoCoF)
RoCoF = df/dt
Critical for early warning: - Negative RoCoF → frequency dropping → load shedding likely - Large magnitude → fast collapse → urgent action needed
Operating Limits
Frequency Operating Limits
| Zone | Frequency Range | Status | Action Required |
|---|---|---|---|
| Normal | 49.8 - 50.2 Hz | ✅ Stable | None |
| Alert | 49.5 - 49.8 Hz | ⚠️ Warning | Monitor closely |
| Emergency | 49.0 - 49.5 Hz | 🔴 Critical | Prepare shedding |
| UFLS Stage 1 | 48.8 - 49.0 Hz | 🔴 Action | Shed 5% load |
| UFLS Stage 2 | 48.5 - 48.8 Hz | 🔴 Action | Shed 10% load |
| UFLS Stage 3 | < 48.5 Hz | 🔴 Critical | Shed 15% load |
| Blackout Risk | < 48.0 Hz | ⛔ Danger | Island grid, shed 30-40% |
Reserve Margin Requirements
- Spinning Reserve: 5-10% of peak load
- Operating Reserve: 10-15% of peak load
- Emergency Reserve: 15-20% of peak load
Load Shedding System
Load Priority Classes
| Priority | Class | Examples | Shedding Order |
|---|---|---|---|
| 1 | Critical | Hospitals, Water, Telecom | NEVER shed |
| 2 | Essential | Industry (key processes) | Last to shed |
| 3 | Important | Commercial (offices) | Middle priority |
| 4 | Standard | Residential | First to shed |
| 5 | Non-essential | Entertainment, Advertising | First to shed |
Under-Frequency Load Shedding (UFLS) Stages
| Stage | Frequency Trigger | Shedding % | Typical MW |
|---|---|---|---|
| Stage 1 | f < 49.5 Hz | 5% | 50-100 MW |
| Stage 2 | f < 49.2 Hz | 10% | 100-200 MW |
| Stage 3 | f < 49.0 Hz | 15% | 150-300 MW |
| Emergency | f < 48.8 Hz | 30-40% | 300-600 MW |
Load Shedding Algorithm
flowchart TD
Start([Load Shedding Start]) --> Input[Input: total_deficit, loads]
Input --> Sort[Sort Loads by Priority<br/>Priority 4-5 first, then 3, then 2<br/>Within same priority: smaller first]
Sort --> Init[Initialize: shed_amount = 0<br/>loads_to_shed = []]
Init --> Loop{For each load}
Loop --> CheckSheddable{Sheddable AND<br/>Priority > 1?}
CheckSheddable -->|No| NextLoad[Next Load]
CheckSheddable -->|Yes| AddLoad[Add to loads_to_shed<br/>shed_amount += load.current_load]
AddLoad --> CheckDeficit{shed_amount >=<br/>total_deficit?}
CheckDeficit -->|Yes| Return[Return loads_to_shed]
CheckDeficit -->|No| NextLoad
NextLoad --> MoreLoads{More Loads?}
MoreLoads -->|Yes| Loop
MoreLoads -->|No| Return
Return --> End([End])
style Start fill:#c8e6c9
style End fill:#ffcdd2
style CheckSheddable fill:#fff9c4
style CheckDeficit fill:#fff9c4
style AddLoad fill:#ffccbc
Key Principles
- Fast Response: Shedding must occur within seconds
- Selective: Only shed necessary loads
- Priority-Based: Protect critical infrastructure
- Minimum Necessary: Shed only what's needed to restore balance
Dispatch & Control Logic
Control Loop (High Level)
flowchart TD
Start([Simulation Start]) --> Measure[Measure Current State]
Measure --> CalcFreq[Calculate Frequency]
CalcFreq --> Forecast[AI: Predict Future Load]
Forecast --> CalcReq[Calculate Required Generation]
CalcReq --> CheckFreq{Frequency<br/>Check}
CheckFreq -->|f < f_min| TryGen[Try Fast Generation]
CheckFreq -->|f > f_max| ReduceGen[Reduce Generation]
CheckFreq -->|Normal| EnforceRamp
TryGen --> StillDeficit{Still<br/>Deficit?}
StillDeficit -->|Yes| ShedLoad[Execute Load Shedding]
StillDeficit -->|No| EnforceRamp
ReduceGen --> EnforceRamp[Enforce Ramp Limits]
ShedLoad --> EnforceRamp
EnforceRamp --> LogState[Log State]
LogState --> UpdateTime[Update Time: t += Δt]
UpdateTime --> CheckEnd{Simulation<br/>Running?}
CheckEnd -->|Yes| Measure
CheckEnd -->|No| End([End])
style Start fill:#c8e6c9
style End fill:#ffcdd2
style CheckFreq fill:#fff9c4
style StillDeficit fill:#fff9c4
style ShedLoad fill:#ffccbc
Fast Generation Support (Before Shedding)
Priority Order: 1. Fast generators (gas, diesel, hydro) - ramp up available reserve 2. Spinning reserve - increase output from online generators 3. Start fast-start units - if time permits 4. Load shedding - only if generation cannot catch up
flowchart TD
Start([Fast Generation Start]) --> Input[Input: deficit]
Input --> Sort[Sort Generators by Ramp Rate<br/>Fastest first]
Sort --> Loop{For each generator}
Loop --> CheckStatus{Status == ON AND<br/>available_reserve > 0?}
CheckStatus -->|No| NextGen[Next Generator]
CheckStatus -->|Yes| RampUp[Ramp Up Generator<br/>deficit -= available_reserve]
RampUp --> CheckDeficit{deficit <= 0?}
CheckDeficit -->|Yes| Return[Return deficit = 0]
CheckDeficit -->|No| NextGen
NextGen --> MoreGens{More Generators?}
MoreGens -->|Yes| Loop
MoreGens -->|No| ReturnRemaining[Return Remaining Deficit]
Return --> End([End])
ReturnRemaining --> End
style Start fill:#c8e6c9
style End fill:#ffcdd2
style CheckStatus fill:#fff9c4
style CheckDeficit fill:#fff9c4
style RampUp fill:#c5e1a5
Blackout Prevention Logic
if frequency < 48.8:
# Critical: Island grid and shed aggressively
island_grid()
emergency_shedding(percentage=0.35) # Shed 35% load
log_critical_event("BLACKOUT_PREVENTION")
AI Integration
AI Model #1: Load Forecasting
Purpose: Predict future demand to enable preventive action
Input Features: - Past load (15s / 1m / 5m resolution) - Time of day (hour, minute) - Day type (weekday, weekend, holiday) - Recent frequency deviation - Temperature (optional, synthetic in simulation) - Historical patterns
Output:
- Load(t + 5min)
- Load(t + 10min)
- Load(t + 30min)
Recommended Models: 1. LSTM/GRU - Best for sequential load patterns 2. Temporal CNN - Faster, stable performance 3. XGBoost - Excellent baseline, interpretable 4. Prophet - Too coarse for real-time control
Training Data: - Synthetic load profiles with realistic patterns - Diurnal cycles, noise, event spikes - Minimum 30 days of data (1-minute resolution)
AI Model #2: Shedding Risk Predictor
Purpose: Answer "Will load shedding happen soon?"
Formulation: Binary/probabilistic classification
Input Features: - Forecast load (from Model #1) - Available generation - Spinning reserve - Ramp limits - Rate of change of frequency (RoCoF) - Time to frequency limit
Output:
- P(load_shedding in next 10 min) - Probability [0, 1]
- risk_level - LOW, MEDIUM, HIGH, CRITICAL
Model: XGBoost classifier or neural network
AI Model #3: Optimal Load Shedding (RL)
Purpose: Minimize total load shed while maintaining stability
Approach: Reinforcement Learning (RL)
State Space:
state = {
"frequency": 49.4, # Hz
"df_dt": -0.03, # Hz/s (RoCoF)
"deficit_mw": 220, # MW
"zones": [
{"zone_id": "A", "mw": 40, "priority": 1},
{"zone_id": "B", "mw": 60, "priority": 3},
{"zone_id": "C", "mw": 100, "priority": 5}
],
"available_reserve": 50, # MW
"time_to_limit": 45 # seconds
}
Action Space:
- Discrete: {shed_zone_A, shed_zone_B, shed_zone_C, ...}
- Continuous: [shed_mw_zone_A, shed_mw_zone_B, ...]
Reward Function:
reward = (
- MW_shed * 1.0 # Minimize shedding
- critical_zone_shed * 10.0 # Heavy penalty for critical loads
- frequency_violation * 100.0 # Prevent frequency collapse
- switching_penalty * 0.5 # Avoid frequent switching
+ stability_bonus * 5.0 # Reward stable operation
)
RL Algorithm: PPO (Proximal Policy Optimization) or DQN
AI Model #4: Time-to-Shedding Estimator
Purpose: Estimate time remaining before UFLS triggers
Hybrid Approach: Physics-based with AI correction
Physics Estimate:
t = (f_current - f_shed) / |df/dt|
AI Correction: - Learns generator response delays - Accounts for load volatility - Adjusts for forecast error patterns
Output:
- time_to_shedding (seconds)
- confidence_interval (seconds)
Early Warning System
Early Warning Signals
| Signal | Threshold | Warning Level | Action |
|---|---|---|---|
| Load forecast > available gen | Deficit > 50 MW | 🟡 Warning | Prepare ramping |
| Spinning reserve < 5% | Reserve < threshold | 🟠 Alert | Start fast units |
| RoCoF < -0.02 Hz/s | Negative trend | 🟠 Alert | Monitor closely |
| Time to limit < 60s | Critical timing | 🔴 Critical | Prepare shedding |
| Frequency < 49.5 Hz | Below normal | 🔴 Action | Execute shedding |
Early Warning Dashboard
Example Alerts:
🟡 Warning: Load exceeds ramp capability in 5 minutes
Forecast: 1200 MW | Available: 1150 MW | Deficit: 50 MW
🟠 Critical: Frequency trend indicates UFLS in 40 seconds
Current: 49.6 Hz | RoCoF: -0.03 Hz/s | Time to 49.5 Hz: 40s
🔴 Action: Shed 200 MW in Zone B
Deficit: 220 MW | Recommended: Shed Zone B (150 MW) + Zone C (50 MW)
Early Warning Logic
flowchart TD
Start([Early Warning System]) --> Input[Input: System State]
Input --> CheckForecast{Forecast Load ><br/>Available Gen + 50 MW?}
CheckForecast -->|Yes| AddWarning1[Add WARNING:<br/>Load forecast exceeds generation]
CheckForecast -->|No| CheckRoCoF
AddWarning1 --> CheckRoCoF{RoCoF < -0.02<br/>Hz/s?}
CheckRoCoF -->|Yes| CalcTime[Calculate Time to Limit]
CalcTime --> CheckTime{Time to Limit<br/>< 60s?}
CheckTime -->|Yes| AddWarning2[Add CRITICAL:<br/>Frequency dropping, UFLS imminent]
CheckTime -->|No| CheckReserve
CheckRoCoF -->|No| CheckReserve
AddWarning2 --> CheckReserve{Spinning Reserve<br/>< 5% of Total Load?}
CheckReserve -->|Yes| AddWarning3[Add ALERT:<br/>Spinning reserve below threshold]
CheckReserve -->|No| Return
AddWarning3 --> Return[Return Warnings]
Return --> End([End])
style Start fill:#c8e6c9
style End fill:#ffcdd2
style CheckForecast fill:#fff9c4
style CheckRoCoF fill:#fff9c4
style CheckTime fill:#fff9c4
style CheckReserve fill:#fff9c4
style AddWarning1 fill:#fff9c4
style AddWarning2 fill:#ffccbc
style AddWarning3 fill:#ffccbc
Data Logging & Metrics
Required Metrics
| Metric | Unit | Purpose |
|---|---|---|
| Time | timestamp | Temporal reference |
| Total Load | MW | Current demand |
| Total Generation | MW | Current supply |
| Frequency | Hz | System stability indicator |
| RoCoF | Hz/s | Rate of frequency change |
| Shedded Load | MW, MWh | Load shedding magnitude |
| Unserved Energy | MWh | Total energy not supplied |
| Reserve Margin | MW, % | Available capacity |
| Prediction Error | MW, MAE | Forecast accuracy |
| Generator Utilization | % | Efficiency metric |
| Ramp Events | count | Generator start/stop events |
| Shedding Events | count | Load disconnection events |
| Frequency Violations | count | Times frequency exceeded limits |
Logging Format
log_entry = {
"timestamp": "2024-01-15T14:30:00",
"load": {
"total_mw": 1200.5,
"residential_mw": 400.2,
"commercial_mw": 500.3,
"industrial_mw": 300.0
},
"generation": {
"total_mw": 1180.0,
"gen_001_mw": 800.0,
"gen_002_mw": 380.0
},
"frequency": {
"hz": 49.6,
"rocof": -0.02
},
"shedding": {
"shedded_mw": 20.5,
"shedded_mwh": 0.34,
"zones_shed": ["ZONE_C"]
},
"forecast": {
"predicted_load_5min": 1220.0,
"prediction_error": 15.2
},
"reserves": {
"spinning_mw": 50.0,
"spinning_percent": 4.2
}
}
Analysis Metrics
Key Performance Indicators (KPIs): 1. Load Shedding Reduction: % reduction vs. baseline 2. Early Warning Accuracy: % of correctly predicted events 3. Frequency Stability: % time in normal range 4. Economic Efficiency: Total cost (generation + shedding penalties) 5. System Reliability: Unserved energy / total energy demand
Simulation Engine
Time Engine
Time Step Options: - Real-time: 1 second (for frequency dynamics) - Control: 5-15 minutes (for dispatch decisions) - Forecast: 30 minutes (prediction horizon)
Recommended Configuration: - Simulation step: 5 minutes (initial) - Control update: 1 minute - Forecast horizon: 30 minutes
Simulation Loop (Pseudocode)
def simulation_loop():
# Initialize
grid = initialize_grid()
generators = initialize_generators()
loads = initialize_loads()
ai_models = load_ai_models()
t = 0
dt = 300 # 5 minutes in seconds
while t < simulation_duration:
# 1. Update load profiles
update_load_profiles(t, loads)
total_load = sum(load.current_load for load in loads)
# 2. AI: Forecast future load
load_forecast = ai_models.load_forecast.predict(
historical_load=recent_load_history,
time_features=extract_time_features(t)
)
# 3. Dispatch generators
required_generation = load_forecast + reserve_margin
dispatch_generators(generators, required_generation)
# 4. Calculate total generation
total_generation = sum(gen.current_output for gen in generators)
# 5. Calculate frequency
frequency = calculate_frequency(total_generation, total_load)
rocof = calculate_rocof(frequency_history)
# 6. Early warning
warnings = early_warning_system({
"forecast_load": load_forecast,
"available_generation": total_generation,
"frequency": frequency,
"rocof": rocof
})
# 7. Check frequency limits
if frequency < 49.5:
# Try fast generation first
remaining_deficit = try_fast_generation(
total_load - total_generation
)
# If still deficit, shed load
if remaining_deficit > 0:
shedding_plan = ai_models.shedding_agent.decide({
"deficit": remaining_deficit,
"zones": get_zone_states(),
"frequency": frequency
})
execute_shedding(shedding_plan)
# 8. Enforce generator ramp limits
enforce_ramp_limits(generators, dt)
# 9. Log state
log_state(t, {
"load": total_load,
"generation": total_generation,
"frequency": frequency,
"shedding": get_shedding_state()
})
# 10. Update time
t += dt
Initial Scope (Recommended)
Start Small: - Single power station (1-2 generators) - Single load bus (aggregate demand) - Time step: 5 minutes - Prediction horizon: 30 minutes - Ramp delay: 30 minutes
Scale Later: - Multiple generators - Multiple zones - Shorter time steps (1 second for frequency) - Longer horizons (1-4 hours)
Implementation Phases
Phase 1: Foundation (Simple, Strong)
Goal: Basic simulation with rule-based control
Components: - ✅ Generator model with ramp limits - ✅ Load model with time profiles - ✅ Frequency calculation - ✅ Rule-based load shedding - ✅ Basic logging
Deliverables: - Working simulation engine - Frequency-based shedding - Data collection pipeline
Timeline: 2-3 weeks
Phase 2: AI Integration (Smart)
Goal: Add AI for forecasting and optimization
Components: - ✅ Load forecasting (LSTM/XGBoost) - ✅ Risk classifier - ✅ Early warning system - ✅ Time-to-shedding estimator
Deliverables: - Trained forecasting model - Early warning dashboard - Improved shedding decisions
Timeline: 3-4 weeks
Phase 3: Advanced Control (Optimal)
Goal: RL-based optimal shedding
Components: - ✅ Reinforcement learning agent - ✅ Multi-zone coordination - ✅ Economic dispatch - ✅ Restoration optimization
Deliverables: - Trained RL agent - Optimal shedding policies - Cost optimization
Timeline: 4-6 weeks
Phase 4: Advanced Features (Production)
Goal: Real-world realism
Components: - ✅ N-1 contingency modeling - ✅ Automatic Generation Control (AGC) - ✅ Market-aware dispatch - ✅ Multi-area coordination
Deliverables: - Production-ready simulator - Comprehensive testing - Performance optimization
Timeline: 6-8 weeks
Technical Stack
Core Libraries
| Library | Purpose | Version |
|---|---|---|
| numpy | Numerical computations | >= 1.24.0 |
| pandas | Data handling | >= 2.0.0 |
| scikit-learn | ML models (baseline) | >= 1.3.0 |
| xgboost | Gradient boosting | >= 2.0.0 |
| tensorflow/pytorch | Deep learning | >= 2.13.0 |
| matplotlib | Visualization | >= 3.7.0 |
| stable-baselines3 | RL algorithms | >= 2.0.0 |
Language
- Primary: Python 3.10+
- Future: Rust (if performance critical)
File Structure
graph TD
Root["smart_grid/"] --> Src["src/"]
Root --> Data["data/"]
Root --> Tests["tests/"]
Root --> Docs["docs/"]
Root --> Req["requirements.txt"]
Src --> GridSim["grid_simulator/"]
Src --> AIModels["ai_models/"]
Src --> Utils["utils/"]
GridSim --> GenPy["generator.py"]
GridSim --> LoadPy["load_model.py"]
GridSim --> NetPy["network.py"]
GridSim --> FreqPy["frequency.py"]
GridSim --> ShedPy["shedding.py"]
GridSim --> CtrlPy["controller.py"]
GridSim --> SimPy["simulation.py"]
GridSim --> MetPy["metrics.py"]
AIModels --> ForecastPy["load_forecast.py"]
AIModels --> RiskPy["risk_predictor.py"]
AIModels --> TimePy["time_estimator.py"]
AIModels --> AgentPy["shedding_agent.py"]
Utils --> DataGenPy["data_generator.py"]
Utils --> VizPy["visualization.py"]
Utils --> ConfigPy["config.py"]
Data --> Training["training/"]
Data --> Logs["logs/"]
Data --> Models["models/"]
Tests --> TestGen["test_generator.py"]
Tests --> TestLoad["test_load_model.py"]
Tests --> TestFreq["test_frequency.py"]
Tests --> TestShed["test_shedding.py"]
Docs --> TechSpec["technical_specification.md"]
Docs --> API["api_reference.md"]
style Root fill:#e3f2fd
style Src fill:#fff3e0
style Data fill:#e8f5e9
style Tests fill:#fce4ec
style Docs fill:#f3e5f5
Sanity Checks
Before AI Integration
- [ ] Can generator follow load with ramp limits?
- [ ] Does ramp delay create realistic shortages?
- [ ] Does shedding occur naturally when needed?
- [ ] Is frequency calculation physically correct?
- [ ] Are priority classes respected?
After AI Integration
- [ ] Is load shedding reduced vs. baseline?
- [ ] Are ramps initiated earlier?
- [ ] Is overgeneration controlled?
- [ ] Is prediction error acceptable (< 5%)?
- [ ] Does early warning provide actionable alerts?
Validation Tests
- Ramp Test: Sudden load increase → generator ramps correctly
- Shedding Test: Large deficit → priority-based shedding
- Frequency Test: Imbalance → frequency responds correctly
- Forecast Test: Historical data → accurate predictions
- RL Test: Training → improved shedding decisions
Key Insights
Critical Principles
- Load shedding is not failure — it's protection
- Controlled mechanism to prevent cascading collapse
-
Goal: Minimize shed while maintaining stability
-
AI optimizes, physics enforces
- AI suggests optimal actions
- Physics-based models enforce constraints
-
Protection systems have final authority
-
Early warning enables prevention
- Predict imbalances before they occur
- Estimate time-to-shedding accurately
-
Take preventive action when possible
-
Realistic constraints are essential
- Without ramp limits, delays, and noise → AI gives false confidence
- Simulation must capture real-world physics
Success Metrics
- Load Shedding Reduction: 30-50% vs. reactive baseline
- Early Warning Accuracy: > 80% true positive rate
- Frequency Stability: > 95% time in normal range
- Prediction Error: < 5% MAE for load forecast
References & Standards
Power System Standards
- IEC 61850: Communication protocols
- IEEE 1547: Grid interconnection
- NERC: Reliability standards
- IEC 61970: Energy management systems
Frequency Standards
- Nominal Frequency: 50.0 Hz (Asia, Europe) or 60.0 Hz (Americas)
- Normal Range: ±0.2 Hz
- UFLS Thresholds: Typically 49.0-49.5 Hz
Load Shedding Standards
- UFLS Stages: 3-5 stages typical
- Shedding Amount: 5-15% per stage
- Response Time: < 1 second for automatic
Conclusion
This technical specification provides a comprehensive foundation for building a realistic, AI-powered smart grid simulator. The system balances:
- Realism: Physics-based models with realistic constraints
- Intelligence: AI-driven forecasting and optimization
- Safety: Rule-based protection with AI assistance
- Scalability: Start simple, scale to complexity
The key to success is implementing realistic constraints (ramp limits, delays, noise) so that AI learns meaningful patterns and provides genuine value in preventing load shedding and maintaining grid stability.
Document Version: 1.0
Last Updated: 2024-01-15
Status: Draft for Review